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Abstract A periodic linear chain consists of a weighted 2n-path where new edges
have been added following a certain periodicity. In this paper, we obtain the effective
resistance and the Kirchhoff index of a periodic linear chain as non trivial functions of
the corresponding expressions for the path. We compute the expression of the Kirchhoff
index of any homogeneous and periodic linear chain which generalizes the previously
known results for ladder-like and hexagonal chains, that correspond to periods one
and two respectively.

Keywords Kirchhoff index · Periodic linear chain · Effective resistance

1 Introduction

The topology of chemical compounds is conventionally represented by a molecular
graph or network where edge weights correspond to bond properties. Thereby a prin-
cipal question is how different graph structures can be compared. To this end, several
molecular structure descriptors based in molecular networks, have been introduced.
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Among them, the Kirchhoff index is a structure-descriptor that has very nice purely
mathematical and physical interpretations, see [5]. The Kirchhoff index is the sum
of the effective resistance between all pair of vertices and, for a general network, it
is difficult to express the index in a closed-form formulae. In view of the above, the
Kirchhoff index has been studied in mathematical, physical and chemical literatures,
see [1,2,6,7] and references therein.

Because the effective resistances, and hence the Kirchhoff index, can be computed
from the Moore–Penrose inverse of the combinatorial Laplacian of the network, our
strategy is to obtain the Moore–Penrose inverse of a periodic linear chain as a per-
turbation of the Moore–Penrose inverse of the underlying path after the addition of
new edges. Our technique differs from the ones previously used, [6], that are based on
the decomposition of the combinatorial Laplacian in structured blocks. The achieve-
ment of the goal requires solving a specific difference equation whose coefficients are
closely related with the effective resistances of the path.

In [1] these authors stated the theoretical foundations for the computations of the
effective resistances and the Kirchhoff index of a family of networks named general-
ized polyominoes. Here we give explicit formulae for the above mentioned parameters
for a particular class of them which present more symmetry and can be interpreted as
a model to describe the structure of some molecules. So, from now on we shall name
those objects as periodic linear chains because linear chain is the common word used
in Chemistry to refer to such molecular graphs.

Let Γ = (V, E, c) be a network; this is a simple and finite connected graph with
vertex set V = {1, 2, . . . , n} and edge set E , where each edge (i, j) has been assigned
a conductance ci j > 0. Moreover, when (i, j) /∈ E we define ci j = 0, in particular
cii = 0 for any i = 1, . . . , n. The (weighted) degree of vertex i is defined as δi =∑n

j=1 ci j .
The combinatorial Laplacian of Γ is the matrix L, whose entries are Lij = −cij for

all i �= j and Lii = δi. Therefore, for each vector u ∈ R
n and for each i = 1, . . . , n

(Lu)i = δi ui −
n∑

j=1

ci j u j =
n∑

j=1

ci j (ui − u j ).

It is well–known that Lu = 0 iff u = ae, a ∈ R and e is the all-1 vector.
For any pair i, j ∈ V , the effective resistance between i and j is defined as Ri j =

ui − u j , where u ∈ R
n is any solution of the linear system Lu = ei − ej, where ei

denotes the i th unit vector with 1 in the i th position and 0 elsewhere. Note that Ri j does
not depend on the chosen solution and in addition, if G denotes the Moore–Penrose
inverse of L, the following equality holds, [2,3]

Ri j = Gi i + G j j − 2Gi j . (1)

Moreover, it is well-known that, for any i, j, k ∈ V the triangular inequality Ri j ≤
Rik + Rkj is an equality iff k separates vertices i and j . The Kirchhoff index of Γ is
the value, see [1–3]
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k = 1

2

n∑

i, j=1

Ri j = n
n∑

i=1

Gi i . (2)

In what follows, the standard inner product on R
h is denoted by 〈·, ·〉; that is,

〈u, v〉 = ∑h
j=1 u j v j for each u, v ∈ R

h .

2 Linear periodic chains

We consider fixed a path P on 2n vertices, labeled as V = {1, . . . , 2n}. The class
of linear chains supported by the path P consists of all connected networks whose
conductance satisfies that ci = ci i+1 > 0 for i = 1, . . . , 2n − 1, ai = ci 2n+1−i ≥ 0
for any i = 1, . . . , n − 1 and ci j = 0 otherwise.

Consider h = ∣
∣{i = 1, . . . , n − 1 : ai > 0}∣∣. So, h = 0 iff a1 = · · · = an−1 = 0;

that is, iff the underlying graph of Γ is nothing but the path P . On the other hand,
when h > 0 there exist indexes 1 ≤ i1 < · · · < ih ≤ n − 1 such that aik > 0 when
k = 1, . . . , h, whereas a j = 0 otherwise, see Fig. 1. Therefore, h is the number of
holes of the linear chain. Notice that in [1,2] this parameter was called link number.

In this work we consider periodic linear chains; that is, linear chains where n =
ph + 1, p ∈ N

∗ and i� = p(� − 1) + 1, � = 1, . . . , h. The number p is called the
period of the linear chain. The class of periodic linear chains with period p and h
holes is denoted by L

p
h . In particular, L

n−1
1 correspond with 2n–cycles, whereas L

1
n−1

corresponds with the standard linear chains on 2n vertices or linear chains with n − 1
quadrangles. Moreover, L

2
h refers to linear hexagonal chains with h hexagons. When

h = 1, it is a molecular graph called benzene, whereas when h = 2 the molecular
graph is the naphthalene.

In this work we only treat with homogeneous and periodic linear chains; that means
that ci = c > 0 for any i = 1, . . . , 2n−1 and ap(�−1)+1 = a > 0 for any � = 1, . . . , h,
see Fig. 2 for the case of a homogeneous and hexagonal linear chain. Clearly, given
a, c > 0 for any h, p ∈ N

∗ there exists a unique homogeneous and periodic linear
chain with h holes and period p whose conductance is determined by the values a

Fig. 1 A linear chain x1 x2

x2n x2n−1

c1 c2

c2n−1 c2n−2

ai1

xk

x2n+1−k

aihaih−1

xn−1 xn

xn+2 xn+1

cn

cn−1

Fig. 2 Homogeneous
hexagonal linear chain
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and c, that we denote by L
p
h (c, a). When a = c, then this homogeneous and periodic

linear chain is denoted simply as L
p
h (c).

If we consider G, R and k, the Moore–Penrose inverse, the effective resistance and
the Kirchhoff index of the path P , it is well–known, see for instance [2], that

Gi j = 1

12nc

[
(2n + 1)(4n + 1) + 3

(
i(i − 2n − 1) + j ( j − 2n − 1) − 2n

∣
∣i − j

∣
∣
)]

,

and R(xi , x j ) =
∣
∣i − j

∣
∣

c
for any i, j = 1, . . . , 2n and hence k = n(4n2 − 1)

3c
.

The combinatorial Laplacian of Γ = L
p
h (c, a) appears as the combinatorial Lapla-

cian of the path perturbed by adding an edge with conductance a between vertices
x p(�−1)+1 and x2n−p(�−1), for all � = 1, . . . , h. Since we interpret a periodic linear
chain as a perturbation of the path by adding weighted edges between opposite ver-
tices, we use the results of Section 2 of [1] to obtain the effective resistances and the
Kirchhoff index of such a linear chain.

Let q = 1 + c−1ap and consider the Chebyshev equation with parameter q

xk+2 = 2qxk+1 − xk, k ∈ Z, (3)

whose solutions, called Chebyshev sequences, are all of the form {Pk(q)}k∈Z, where
{Pk}k∈Z is a sequence of Chebyshev polynomials. Due to the role played by this
equation in the computation of the parameters of homogeneous and periodic linear
chains, we describe some useful properties of Chebyshev sequences in “Appendix”.
In particular if Tk, Uk denote the kth Chebyshev polynomials of first and second kind
respectively, then Tk(q) > 0 for any k ∈ Z and Uk(q) > 0 for any k ∈ N. Moreover,
the Chebyshev sequences defined as

Vk(q) = Uk(q)−Uk−1(q) and Qk(q) = (2p+1)Uk(q)−Uk−1(q), k ∈ Z, (4)

play a main role to obtain the parameters of homogeneous linear periodic chains. We
remark that Vk is also known as the k-th Chebyshev polynomial of third kind.

If we consider the (h × h)-matrix � = (λi j ) where

λi j = a Rmax{p(i−1)+1,p( j−1)+1} 2n+1−max{p(i−1)+1,p( j−1)+1}
= a

c

(
2
(
n − p max{ j − 1, i − 1}) − 1

)
, i, j = 1, . . . , h,

then the following result holds, see [1, Proposition 2.5].

Proposition 1 The matrix I + � is invertible and its inverse M = (bi j ) is given by

bi j = δi j − aVmin{i, j}−1(q)Qh−max{i, j}(q)

cTh(q) + a(p + 1)Uh−1(q)
, i, j = 1, . . . , h.
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Proof According [1, Proposition 2.5], we need to obtain {u j }h
j=1 and {v j }h

j=1 the
solutions of the difference equation

2qzi − zi−1 − zi+1 = 0, i = 2, . . . , h − 1

satisfying u1 = c

2p
, u2 = a + c

2p
and vh−1 = a + (4p + 1)c

2p(2p + 1)
, vh = c

2p
, respec-

tively. Clearly u j = c

2p
Vj−1(q), whereas v j = c

2p(2p + 1)
Qh− j (q). 	


Using the result in [1, Theorem 2.1], we can obtain an explicit expression for the
Moore–Penrose inverse, effective resistances and Kirchhoff index of an homogenous
and periodic linear chain. In this case, the symmetry of the chain allows us to simplify
the formula in the above mentioned theorem. Specifically, according with the notations
in [1], for any j = 1, . . . , n we define the vector v j whose components are

v j,m = Rmax{i j ,im } 2n+1−max{i j ,im }
= 2

(
n − max{p(m − 1) + 1, j}) + 1, m = 1, . . . , h,

and also the vector u j = Mv j , we have the following key result.

Theorem 1 Given Γ = L
p
h (c, a), then for any i, j = 1, . . . , n,

RΓ
i j = RΓ

2n+1−i 2n+1− j =
∣
∣i − j

∣
∣

c
− a

4c2

[
〈ui , vi 〉 + 〈u j , v j 〉 − 2〈ui , v j 〉

]
,

RΓ
i 2n+1− j = RΓ

2n+1− j i = 2n + 1 − i − j

c
− a

4c2

[
〈ui , vi 〉 + 〈u j , v j 〉 + 2〈ui , v j 〉

]
.

Therefore,

kΓ = n(4n2 − 1)

3c
− na

c2

n∑

j=1

〈u j , v j 〉.

In order to apply the previous result, we only need to obtain the vectors v j , u j , j =
1, . . . , n and their inner products.

Proposition 2 For any 1 ≤ � ≤ h and any 0 ≤ k ≤ p − 1 let i = p(� − 1) + 1 + k.
Then

vi,m =
{

2
(
n − i

) + 1, 1 ≤ m ≤ �;
2
(
n − p(m − 1)

) − 1, � < m ≤ h

and hence

ui,m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
[
(p − k)Qh−�(q) + k Qh−�−1(q)

]

p
[
cTh(q) + a(p + 1)Uh−1(q)

] Vm−1(q), 1 ≤ m ≤ �;
[
2akU�−1(q) + cV�−1(q)

]

cTh(q) + a(p + 1)Uh−1(q)
Qh−m(q), � < m ≤ h.
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Moreover, vn,m = 1, 1 ≤ m ≤ h and

un,m = cVm−1(q)

cTh(q) + a(p + 1)Uh−1(q)
, 1 ≤ m ≤ h.

Proposition 3 For any 1 ≤ �0 ≤ �1 ≤ h and any 0 ≤ k, r ≤ p − 1 consider
i = p(�0 − 1) + 1 + k and j = p(�1 − 1) + 1 + r . Then,

〈ui , v j 〉 = c

a

[
2(n − j) + 1

]

− c
[
2akU�0−1(q) + cV�0−1(q)

]

pa
[
cTh(q) + a(p + 1)Uh−1(q)

]
[
(p − r)Qh−�1(q) + r Qh−�1−1(q)

]
.

Moreover,

〈ui , vn〉 = c

a
− c

[
2akU�0−1(q) + cV�0−1(q)

]

a
[
cTh(q) + a(p + 1)Uh−1(q)

]

〈un, vn〉 = cUh−1(q)

cTh(q) + a(p + 1)Uh−1(q)
.

Proof First, 〈ui , v j 〉 = A + B + C where

A =
�0∑

m=1

ui,mv j,m, B =
�1∑

m=�0+1

ui,mv j,m and C =
h∑

m=�1+1

ui,mv j,m .

If D = cTh(q) + a(p + 1)Uh−1(q), applying Lemmas 2 and 3 we get that

A = c

pD

[
2(n − j) + 1

][
(p − k)Qh−�0(q) + k Qh−�0−1(q)

] �0∑

m=1

Vm−1(q)

= c

pD

[
2(n − j) + 1

][
(p − k)Qh−�0(q) + k Qh−�0−1(q)

]
U�0−1(q),

B = 1

D

[
2(n − j) + 1

][
2akU�0−1(q) + cV�0−1(q)

] �1∑

m=�0+1

Qh−m(q)

= c

2paD

[
2(n − j) + 1

][
2akU�0−1(q) + cV�0−1(q)

]

× [
Qh−�1−1(q) − Qh−�1(q) + Qh−�0(q) − Qh−�0−1(q)

]
,

C = 1

D

[
2akU�0−1(q) + cV�0−1(q)

] h∑

m=�1+1

[
2
(
n − p(m − 1)

) − 1
]
Qh−m(q)

= c

2paD

[
2akU�0−1(q) + cV�0−1(q)

]

×
[[

2(n − j) + 1 + 2r
](

Qh−�1(q) − Qh−�1−1(q)
) − 2pQh−�1(q)

]
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and hence, we obtain that

〈ui , v j 〉 = c

a

[
2(n − j) + 1

]

− c

paD

[
2akU�0−1(q) + cV�0−1(q)

][
(p − r)Qh−�1(q)+r Qh−�1−1(q)

]
.

The same reasoning concludes that

〈ui , vn〉 =
�0∑

m=1

ui,m +
h∑

m=�0+1

ui,m = c

a
− c

aD

[
2akU�0−1(q) + cV�0−1(q)

]

and also that 〈un, vn〉 = c

D
Uh−1(q). 	


Next we give the main result of this paper; that is, the expression of the Kirchhoff
index of any homogeneous and periodic linear chain. We express it in two equivalent
ways, either directly in terms of the Chebyshev polynomials of first and second kind, or
in terms of α = q +√

q2 − 1 and β = q −√
q2 − 1, the roots of the polynomial x2 −

2qx +1 in which Chebyshev polynomials can, in turns, be expressed, see “Appendix”.

Theorem 2 Given p, h ∈ N
∗ and a, c > 0, the Kirchhoff index of the homogeneous

and periodic linear chain Γ = L
p
h (c, a) is

kΓ = ph(ph + 1)(ph + 2)

3c
+

(ph + 1)
[

F1Th(q) + F2Uh−1(q)
]

3c(ap + 2c)
[
cTh(q) + a(p + 1)Uh−1(q)

]

where

F1 = 3c(ap + 2c) + hc(p + 1)(ap2 + 3cp − a),

F2 = 2a(a − c)p3 + c(8a − 3c)p2 + (
a(a − c) + 9c2)p

+ ac + hp(ap + 2c)(ap2 + 3cp − a).

Equivalently,

kΓ = ph(ph + 1)(ph + 2)

3c
+ (ph + 1)

[
G1α

h + G2β
h
]

6c(ap + 2c)
[
(cα + a − c)αh − (cβ + a − c)βh

] ,

where G1 = F1(α − β) + 2F2 and G2 = F1(α − β) − 2F2.
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Proof If we consider D = cTh(q) + a(p + 1)Uh−1(q) then,

n∑

j=1

〈u j , v j 〉 = c

a
(n2 − 1) + c

D
Uh−1(q)

− c

paD

h∑

�=1

p−1∑

k=0

[
2akU�−1(q) + cV�−1(q)

][
(p − k)Qh−�(q) + k Qh−�−1(q)

]

= c

a
(n2 − 1) + c

D
Uh−1(q)

− c(p − 1)

3D

[

(p + 1)

h∑

�=1

U�−1(q)Qh−�(q) + (2p − 1)

h∑

�=1

U�−1(q)Qh−�−1(q)

]

− c2

2aD

[

(p + 1)

h∑

�=1

V�−1(q)Qh−�(q) + (p − 1)

h∑

�=1

V�−1(q)Qh−�−1(q)

]

.

Therefore, taking into account the identities of Lemma 3,

n∑

j=1

〈u j , v j 〉 = c

a
(n2 − 1) + c

D
Uh−1(q) − c

6a(ap + 2c)D

[
φ1Th(q) + φ2Uh−1(q)

]
,

where,

φ1 = (p2 − 1)p1 + (2p2 − 3p + 1)p3 + 3c(p + 1)p5 + 3(p − 1)p7,

φ2 = (p2 − 1)p2 + (2p2 − 3p + 1)p4 + 3c(p + 1)p6 + 3(p − 1)p8.

Therefore,

kΓ = n(n2 − 1)

3c
+ n

c
− na

cD
Uh−1(q) + n

6c(ap + 2c)D

[
φ1Th(q) + φ2Uh−1(q)

]

= ph(ph + 1)(ph + 2)

3c

+ (ph + 1)

6c(ap+2c)D

[(
φ1 + 6c(ap + 2c)

)
Th(q) + (

φ2 + 6ap(ap + 2c)
)
Uh−1(q)

]

and the result follows. 	

In particular when a = c, we get the following result.

Corollary 1 Given p, h ∈ N
∗ and c > 0, the Kirchhoff index of the homogeneous

and periodic linear chain Γ = L
p
h (c) is

kΓ = ph(ph + 1)(ph + 2)

3c

+ (ph + 1)

3c(p + 2)Uh(p + 1)

[
f1Th(p + 1) + f2Uh−1(p + 1)

]
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where

f1 = 3(p + 2) + h(p + 1)(p2 + 3p − 1),

f2 = 5p2 + 9p + 1 + hp(p + 2)(p2 + 3p − 1).

Equivalently,

kΓ = ph(ph + 1)(ph + 2)

3c

+
(ph + 1)

[
g1

(
p + 1 + √

p(p + 2)
)h + g2

(
p + 1 − √

p(p + 2)
)h]

3c(p + 2)
[(

p + 1 + √
p(p + 2)

)h+1 −
(

p + 1 − √
p(p + 2)

)h+1]

where g1 = f1
√

p(p + 2) + f2 and g2 = f1
√

p(p + 2) − f2.

Observe that the above result for linear chains; that is, p = 1 and h = n − 1
coincides with the one obtained in [2, Corollary 12] for arbitrary a, c and with the one
obtained in [6, Theorem 4.1] for a = c.

Next we particularize the above result to the case of some relevant molecular graphs
that have been studied in the literature for some particular cases.

Corollary 2 The Kirchhoff index of the linear hexagonal chain Γ = L
2
h(c, a) is

kΓ = 4h(h + 1)(2h + 1)

3c
+

(2h + 1)
[
cH1Th(q) + H2Uh−1(q)

]

2c(a + c)
[
cTh(q) + 3aUh−1(q)

] ,

where H1 = 2(a + c)+ 3h(a + 2c) and H2 = 6a2 + 5ac + 2c2 + 4h(a + c)(a + 2c).
Equivalently

kΓ = 4h(h + 1)(2h + 1)

3c

+
(2h + 1)

[
h1

(
2a + c + 2

√
a(a + c)

)h + h2
(
2a + c − 2

√
a(a + c)

)h
]

2c(a + c)
[
h3

(
2a + c + 2

√
a(a + c)

)h − h4
(
2a + c − 2

√
a(a + c)

)h]

where

h1 = 2H1

√
a(a + c) + H2, h2 = 2H1

√
a(a + c) − H2,

h3 = 3a + 2
√

a(a + c), h4 = 3a − 2
√

a(a + c).

In particular, if a = c, then

kΓ = 4h(h + 1)(2h + 1)

3c
+ (2h + 1)

4cUh(3)

[
(9h + 4)Th(3) + (24h + 13)Uh−1(3)

]
,
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or equivalently

kΓ = 4h(h + 1)(2h + 1)

3c
+

(2h + 1)
[
ϕ1

(
3 + 2

√
2

)h + ϕ2
(
3 − 2

√
2

)h
]

4c
[(

3 + 2
√

2
)h+1 − (

3 − 2
√

2
)h+1

] ,

where ϕ1 = 2(9h + 4)
√

2 + 24h + 13 and ϕ2 = 2(9h + 4)
√

2 − 24h − 13.

The above formula for the Kirchhoff index of L
2
h(c) basically coincides with the

formula given in [6, Theorem 3.7]. We remark that there is an errata in the formula
(3.10) of the mentioned paper, since the factor in the divisor must be 8 instead 4.
However, the values of Table I were obtained using the correct factor.

Appendix

If for any k ∈ Z, Tk and Uk are the kth Chebyshev polynomials of first and second
kind respectively, see [4], it is well-known that for any sequence of Chebyshev poly-
nomials {Pk}k∈Z; that is, polynomials satisfying the recurrence relation Pk+2(z) =
2z Pk+1(z) − Pk(z), k ∈ Z, there exist A, B ∈ R such that Pk = ATk + BUk−1 for
any k ∈ Z. Moreover, as q = 1 + c−1ap > 1, since the values

α = q +
√

q2 − 1 = c−1(ap + c + √
ap(ap + 2c

)

β = q −
√

q2 − 1 = c−1(ap + c − √
ap(ap + 2c

)
(5)

are the roots of the polynomial x2 − 2qx + 1, each Chebyshev sequence can be
expressed as a linear combination of the sequences {αk}k∈Z and {βk}k∈Z. Specifically,
it is also well-known, see newly [4], that

Tk(q) = 1

2

(
αk + βk) and Uk(q) = 1

α − β

(
αk+1 − βk+1), k ∈ Z, (6)

which in particular implies that Tk(q) > 0 for any k ∈ Z and Uk(q) > 0 for any
k ∈ N, since 0 < β < 1 < α (and αβ = 1).

Lemma 1 For any k ∈ Z the following identities hold:

Tk±1(q) = qTk(q) ± (q2 − 1)Uk−1(q) and Uk(q) = Tk(q) + qUk−1(q).

Moreover

Uk(q)Um(q) = 1

2(q2 − 1)

[
Tk+m+2(q) − Tk−m(q)

]
, k, m ∈ Z
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and given m ≥ 1,

m∑

k=1

Tm−2k(q) =
m∑

k=1

Tm+2−2k(q) = qUm−1(q),

m∑

k=1

Tm+1−2k(q) = Um−1(q)

m∑

k=1

Tm−1−2k(q) = (
2(q2 − 1) + 1

)
Um−1(q).

Lemma 2 If {Pk(q)}k∈Z is a Chebyshev sequence, then for any A, B ∈ R, and r, t ∈
N

∗ such that t ≤ r

r∑

k=t

(Ak + B)Pk(q) = c

2pa
(Ar + B)

(
Pr+1(q) − Pr (q)

)

− c

2pa
(At + B)

(
Pt (q) − Pt−1(q)

) + cA

2pa

(
Pt (q) − Pr (q)

)
.

The following relations between the polynomials defined in (4), are very useful
throughout the paper. All of them are consequence of Lemma 1.

Lemma 3 For any m ∈ Z we have

cTh(q) + a(p + 1)Uh−1(q) = aQh−m(q)Um−1(q)

+ c

2p
Vm−1(q)

[
Qh−m(q) − Qh−m−1(q)

]
.

In addition,

h∑

�=1

U�−1(q)Qh−�(q) = 1

2a(ap + 2c)

[
p1Th(q) + p2Uh−1(q)

]
,

h∑

�=1

U�−1(q)Qh−�−1(q) = 1

2a(ap + 2c)

[
p3Th(q) + p4Uh−1(q)

]

h∑

�=1

V�−1(q)Qh−�(q) = 1

(ap + 2c)

[
p5Th(q) + p6Uh−1(q)

]
,

h∑

�=1

V�−1(q)Qh−�−1(q) = 1

c(ap + 2c)

[
p7Th(q) + p8Uh−1(q)

]
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where,

p1 = ch(2ap + a + 2c), p2 = ah(2p + 1)(ap + 2c) + c(a − 2c),

p3 = hc(2c − a), p4 = ha(ap + 2c) + 2(a − c)(ap + c) + ac,

p5 = hc(p + 1), p6 = hp(ap + 2c) + c(p + 1),

p7 = hc
(
(a − c)p + c

)
, p8 = c2 − p(a − c)(h(ap + 2c) − c).
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